
YOU'RE RUNNING
THAT ON WHAT?

DEVELOPING
SOFTWARE FOR

NON-X86
ARCHITECTURES

ELIZABETH K.

JOSEPH, IBM

@PLEIA2

WWCODE

CONNECT

REIMAGINE JUNE

2021

ELIZABETH K. JOSEPH

• Linux Systems Administrator turned Developer

Advocate for IBM Z

• Author of books on Ubuntu Linux and

OpenStack

• Contributor to open source communities for 20

years

• @pleia2 on Twitter, Instagram

ONCE UPON A
TIME, THERE WERE
MANY
ARCHITECTURES

THEN WE KINDA
CONSOLIDATED
ON X86

NOW THERE ARE
MANY AGAIN!

KIND OF, THEY NEVER REALLY WENT AWAY ;)

IBM Z – S390X /
ZARCHITECTURE

IBM POWER /
OPENPOWER

RASPBERRY PI
- ARM

YOUR PHONE - ARM

APPLE M1 - ARM

COMPILING SOFTWARE 101 – ARCHITECTURE

Today the commodity
architecture is 64-bit x86,

based on instructions
developed in the early

1980s.

As a result, most developers
don't pay much attention to

architecture! But we are
seeing an increasing need

to do so as non-x86
architectures become more

common.

COMPILING
SOFTWARE

101 – CODE

• At the lowest levels, classic* computing still only

understands 0 and 1. That's what all those billions of tiny

transistors are doing.

• Compilers and interpreters take human-readable code

that you write and convert it to something the computer

can understand, ultimately a series of 0s and 1s.

• The code you see is just the first step in the process as far

as the computer is concerned.

* What is beyond Classic Computing? Quantum!

COMPILING SOFTWARE 101 – OPEN SOURCE

When something is "open source" you have access to the human-
readable code, it's available in the open.

You then compile that code to create a binary. This
code must be compiled for the respective architecture
you're targeting since it needs to be built for that CPU
hardware (x86, s390x, ARM, Power, etc).

HIGHER VERSUS LOWER-LEVEL LANGUAGES

It has very little to do with how "hard" the language is, and more to do with how

much abstraction is between your code and the hardware.

Lower-level is closer to the hardware, and may have optimizations: Assembler,

C, C++

Higher-level is further from the hardware, and often doesn't care where it's run:

Python, Node.js

WHAT'S A DEVELOPER TO DO?

Well, you could do nothing, carry on!

Especially if you're working with higher-level languages or SDKs for your

platform, you may not run into issues (this is often the case with mobile app

development).

But being aware of diverse architectures will make you a better programmer!

WHAT'S A DEVELOPER TO DO?

• Learn more about architecture-specific components of your language

• Be mindful about your usage and don't use them unless you have a specific reason to do

so

• Avoid making assumptions about hardware-specific things like pointer sizes or

byte ordering

• Document the usage, so it's easier for anyone who may wish to port your code in the

future

WHAT'S A DEVELOPER TO DO?

• Avoid "tricks" with CPU-specific instructions and caching

• Some developers over-optimize their code and drop to Assembler

• Modern compilers are already pretty smart!

• Today's tricks may not even work on tomorrow's compiler, or x86 system

• Don't make assumptions about hardware enumeration or memory regions

WHAT'S A DEVELOPER TO DO?

• Try running your code on another architecture!

• A Raspberry Pi 4 (ARM) kit with 4G of RAM will run you about $100, and several major

Linux distributions will run on it

• You can sign up for an s390x Linux virtual machine for free for 120 days with in the IBM

LinuxONE Community Cloud: https://linuxone.cloud.marist.edu/

GOING DOWN THE RABBIT HOLE

• Learn about the following key terms

• RISC verse CISC

• ISA (Instruction Set Architecture)

• Conditional execution

• Hardware registers (interface between hardware and software)

• Hardware threads and hyperthreading

• CPU cache and the Translation Lookaside Buffer (TLB)

• Endianness (memory ordering, big- verses little-endian)

• ...probably a lot more, but this is a good start!

CONTACT

Elizabeth K. Joseph

@pleia2 on Twitter and Instagram

lyz@princessleia.com | lyz@ibm.com

mailto:Lyz@princessleia.com
mailto:lyz@ibm.com

