DC/0S AND FAST DATA o%s,
(THE SMACK STACK) %’

DC/0S

ARCHITEGTURAL SHIFT

’ b Users
TRADITIONAL
APPLICATION E

\) Service

«<— Data

Data growth (CAGR): 40%+

MODERN
APPLICATION

24

TODAY'S REINFORCING TRENDS

CONTAINERIZATION

MICROSERVICES ‘.I

BIG DATA & ANALYTICS

CONTAINER ORCHESTRATION

TODAY'S REINFORCING TRENDS

CONTAINERIZATION

MICROSERVICES ‘.I

FAST B1G DATA & ANALYTICS

CONTAINER ORCHESTRATION

FROM BIG DATA TO FAST DATA

Days Hours Minutes Seconds Microseconds
Batch > Micro-Batch > > Event Processing
Reports what has happened using descriptive analytics Solves problems using predictive and prescriptive analytics

Billing, Chargeback Product recommendations Real-time Pricing and Routing Real-time Advertising Predictive User Interface

ON THE EDGE, AND STILL REALLY BIG!

A380-1000: 10,000 sensors in each wing;
produces more than 7Tb of loT data per day

[1] https://goo.gl/2S4q5N

MODERN APPLICATION -> FAST DATA BUILT-IN

Message Analytics
Queue/Bus (Streaming) Use Cases:

—

. Data Ingestion

Devices Sensors

e Anomaly detection

° Personalization

e loT Applications

Request/Response e Predictive Analytics
- >
— e Machine Learning

Client Microservices Distributed Storage

A GOOD STACK ...

Message Analytics
_ Queue/Bus (Streaming) Use Cases:
e Anomaly detection
. (@) Bronae g
Data Ingestion e Personalization
Devices Sensors I e |oT Applications
Request/Response ,W /] e Predictive Analytics
- > A& akka < > m‘%@
cassandra e Machine Learning

Client Microservices Distributed Storage

MESSAGE Message Brokers
QUEUES e Apache Kafka

e (IMQ, RabbitMQ, Disque
Log-based Queues
e fluentd, Logstash, Flume

see also queues.io

http://queues.io

APACHE KAFKA

Typical Use: A reliable buffer for stream

processing
My Topic Partition 1
e [o (D> s || Why Kafka?
| .. . Paritin2 * e High-throughput, distributed,
A consmers persistent publish-subscribe
= EaEE messaging system
| el S P e Created by LinkedIn; used in

production by 100+ web-scale
companies i

[1] https://cwiki.apache.org/confluence/display/KAFKA/Powered+By

DELIVERY GUARANTEES

At most once—Messages may be lost
but are never redelivered

At least once—Messages are never
lost but may be redelivered (Kafka)
Exactly once—Messages are
delivered once and only once (this is
what everyone actually wants, but no
one can deliver!)

Murphy’s Law of Distributed
Systems:

Anything that can
go wrong, will go
wrong .. partially!

STREAMING Microbatching
ANAI_YT'CS e Apache Spark (Streaming)

Native Streaming

Apache Flink

Apache Storm/Heron
APaChe Apex

Apache Samza

sk

APACHE

APACHE SPARK (STREAMING)

Kafka Typical Use: distributed, large-scale data
v SpQrK Q[ﬁ] processing; micro-batching

Kinesis Sl‘feOmlng Dashboards

e Why Spark Streaming?

e Micro-batching creates very low
latency, which can be faster

e [opark | oot ooark |oeaees o e e Well defined role means it fits in well
Streaming Engine |11 with other pieces of the pipeline

DISTRIBUTED
STORAGE

NoSQL Time-Series Datastores

e ArangoDB e InfluxDB

e mongoDB e OpenTSDB

e Apache Cassandra e KairosDB

e Apache HBase e Prometheus
SQL see also iot-a.info
e MemSQL

Filesystems

: ggigyte cass:wdra g
A MEMSQL

APACHE CASSANDRA

Typical Use: No-dependency, time series
database

Why Cassandra?

A CHE&

e Atop level Apache project born at
Facebook and built on Amazon’s
Cassandra Dynamo and Google’s BigTable
e Offers continuous availability, linear
scale performance, operational
simplicity and easy data distribution

how do we operate
these distributed
systems?

most organizations have many stateless
independent (micro)services, the
distributed systems I’m talking about here

are o000

O state latency
Ssyconons . CONSENSUS
(O rate &

SME - =replication ..
topology © 5 = ini<ti
I /=T R nondeterministic
ytheorem pa X0S paggﬂgﬂefa I I u re

scalability ~ administrators
insecure bandwidth yowyer

stateful multiple

how do we scale the
operations of
distributed systems?

§@ kafka

Apache Spark: distributed,
large-scale data processing

Apache Mesos: cluster resource
manager

Akka: toolkit for message driven
applications

Apache Cassandra: distributed,
highly-available database

Apache Kafka: distributed,
highly-available messaging system

distributed systems

DATA &
ANALYTICS
DAY 2 OPS
CHALLENGES

B Bare metal storage (or someone else’s problem)
B Drive down job latency and drive up utilization
B Run multiple versions simultaneously

B Upgrade complicated data systems

1: download

2: deploy

3: monitor

4: maintain

5: upgrade »> goto 1

1: download

fault tolerance
2 m:;:::irn high availability
5: upgrade » goto 1 latency

bandwidth

CPU/mem resources

+ + + + +

configuration

1: download

3: monitor
4: maintain
5: upgrade > goto 1

Operations * %}fa?%;ﬂlft?h

CFREILLY"

1: download

3: monitor
4: maintain

5: upgrade » goto 1

INSTALL.SH
#/bin/bosh

pipinstall “$1" &

eosy_install “§1° &

brew install “$1° &

npm nstall *$1° &

yom install °$1" & dnf instoll “$1" &

docker run ‘$1° &

Pkg install ‘81" &

opt-get instoll “$1" &

sudo opt-get install “$1" &

steomcmd +app_update “$1" validate &
git clone https:/github.com/"$1'/ '$1' &
cd *$1";. /configure; make; moke install &
corl*$1’ | bash &

=
~

INSTALL.SH
#/bin/bosh

pip install rﬁl;l&
eosy_install 41" &
1: download brew) install “$1" &
npm install 87 &
yom install ‘$1" & dnf instoll ‘81" &

docker run $T &
. O Yt
opt-get instoll 81
3: monitor soro apt-get install *$T &

. . 5teommdh+app_.update "S-l"f %c}a‘t::l &
it clone https:/github.com/*$1°/°$1° &
4: maintain ST Jronfg re;mkesme Vptoll 2

5: upgrade » goto 1 cort*$F | bosh &

(1) express

[—

e\ -
> puppet A g‘a;g

=
~

1: download

3: monitor
4: maintain
5: upgrade » goto 1

INSTALL.SH
#/bin/bosh

pipinstall “$1" &

eosy_install “§1° &

brew instoll “$1° &

npm nstall *$1° &

yom install ‘$1" & dnf instoll ‘81" &

docker run ‘$1° &

Pkg install ‘81" &

opt-get instoll “$1" &

sudo opt-get install “$1" &

steomcmd +app_update “$1" validate &
git clone https:/github.com/'$1'/ 81" &
cd *$1";. /configure; make; moke install &
corl*$1’ | bash &

(1) express

A\ =
&

(2) orchestrate

y /[y /[
"n2 M n3 [}
y [
na |/
y / y /[
7 |/ o |

T T

INSTALL.SH

#!/bin/bosh
pipinstall “$1" &

eosy_instoll “81" &
1: download brew) install “$1" &
npm install 87 &
mrﬁtali ':-%“ & dnfinstall ‘91" &
n 81 &
D.Pt‘ . g qn
3: monitor T arx
steomcmd +app_update “$1" validate &

4: maintain g b |
5: upgrade » goto 1

curl"$1" | bash &

N\
¢~ & puppet

(2) orchestrate

1: download
2: deploy

4: maintain
5: upgrade » goto 1

Operations * %}fa?%;ﬂlft?h

CFREILLY"

1: download
2: deploy

4: maintain
5: upgrade > goto 1

N a g io s Current Network Status

[General |
®Home

% Documentation
[Manitoring |

% Tactical Overview
@ Status Detail

@ Status Overview

% Status Summary
% Status Grid

% Status Map Display Filters
©3.D Status Map tat

® Service Problems
® Network Outages

®Trends

® Availability
® Alert History
% Notifications
% Log File

% Comments
% Downtime

% Process Info
® Performance Info

[Comfiguration |
®View Config

Host Status Totals

Service Details For All Hosts

- Flugin timed out after 10

- Plugin ti ut after 10

Timed Out)

ut after 10

Timed Quf)

- Plugin ti ut after 1

Timed Out)

1: download -
2: deploy fi rSt, debug coe

3: monitor

5: upgrade > goto 1

Operations * %}fa?%;ﬂlft?h

CFREILLY"

1: download -
P first, debug ...

3: monitor

5: upgrade » goto 1

1: download o
2: deploy second, fix (scale, patch, etc)

3: monitor vee

5:upgrade » goto 1

L ::;vl';;oad then, debug again ...

3: monitor

5: upgrade » goto 1

(/)

1: download finally, write so it never
2: deploy

3: monitor happens again ...

5: upgrade » goto 1

1: download

2: deploy

3: monitor

4: maintain

5: upgrade » goto 1

4

distributed systems should
(be able to) operate themselves;
deploy, monitor, upgrade ...

(1) operators have inadequate
knowledge of distributed system
needs/semantics

to make optimal decisions

(1) operators have inadequate
knowledge of distributed system
needs/semantics

to make optimal decisions

(even after reading the book)

(2) execution needs/semantics can’t
easily or efficiently be expressed
to underlying system, and vice versa

i@hadaap

IMiap Reduce

(1) express

INSTALL.SH
#/bin/bosh

pipinstall “$1" &

eosy_install “§1° &

brew instoll “$1° &

npm nstall *$1° &

yum install “$1" & dnfinstoll “$1" &

docker run "$1° &

Pkg install ‘81" &

opt-get instoll “$1° &

sudo apt-get install "$1" &

steomcmd +app_update “$1" validate &
git clone https:/github.com/"$1°/°$1" &
cd “$1";. /configure; make; make inStall &
curl’$1’" | bash &

—>

(2) orchestrate

=
~
RN

Input

the quick
brown fox

the fox ate
the mouse

how now
brown
COwW

Map

Shuffle & Sort

the, 1
brown, 1
fox, 1

Reduce

(]
Reduce

Output

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1
mouse, 1
quick, 1

© 2017 Mesosphere, Inc. All Rights Reserved.

43

configuration spectrum:

r--———-——o_—_—_—_——

coarse-grained fine-grained

configuration spectrum:

r--———-——o_—_—_—_——

coarse-grained fine-grained

T

easiest to express (how most of us would do it),
but worst resource utilization

configuration spectrum:

r--———-——o_—_—_—_——

coarse-grained fine-grained

T

hardest to express (if even possible),
but best resource utilization

why can’t Hadoop decide this for me?

applications “operate” themselves
on Linux;

application

!

operating system

e —,——————————————ell B LRI

syscallinterface:
memory allocate
clone/fork
create file

read, write

once upon a time ... before virtual memory

ox0 0x8
physical memory

configuration:

+

ox0 ox8
I applications take
. physical memory

address range as
an input

once upon a time ... before virtual memory

ox0 0x8
physical memory

configuration:
I e [0x0,0x1) — calc.exe

ox0
.
I

distributed systems need
Interface to communicate
with underlying system,
and vice versa

interface:

resource allocation
launch container/VM
create storage
attach/detach storage

operating system should
be able to callback into
application

learning from history ... bidirectional interface

application

__

operating system

__

callback interface:

paging/swapping
CPU deallocation

learning from history ... bidirectional interface

application

__

operating system

__

callback interface:

paging/swapping
CPU deal\location

better than LRU,

ask the
application what
pages to swap!

learning from history ... bidirectional interface

application callback interface:
paging/swapping
o CPU deallocation

search for ‘scheduler

activations’ and
operating system ‘Lithe composition’

© 2017 Mesosphere, Inc. All Rights Reserved. 58

consequences
of inadequate
interfaces for
parallel
software ...

Enable MKL threading - use when you are sure that there
are enough resources (physical cores) for MKL threading
in addition to your own threads. Choose N carefully.

Example 1:

application has 2 threads, each thread calls MKL and the
system has 8 cores: it's reasonable to set
MKL NUM THREADS=4.

Example 2:

MKL function is called from a critical section of a parallel
region - set MKL_NUM_THREADS=N, where N is the
number of physical cores in the system (or use
mkl_set_num_thread(N) routine) .

NOTE:
set additional options when the application is based on
OpenMP* threads.

consequences
of inadequate
interfaces for
parallel
software ...

Enable MKL threading - use when you are sure that there
are enough resources (physical cores) for MKL threading

in addition to your own threads.

Example 1:

application has 2 threads, each thread calls MKL and the
system has 8 cores: it's reasonable to set
MKL NUM THREADS=4.

Example 2:

MKL function is called from a critical section of a parallel
region - set MKL_NUM_THREADS=N, where N is the
number of physical cores in the system (or use
mkl_set_num_thread(N) routine) .

NOTE:
set additional options when the application is based on
OpenMP* threads.

consequences
of inadequate
interfaces for
parallel
software ...

Enable MKL threading - use when you are sure that there
are enough resources (physical cores) for MKL threading
in addition to your own threads.|Choose N carefully.
Example 1:

application has 2 threads, each thread calls MKL and the
system has 8 cores: it's reasonable to set
MKL NUM THREADS=4.

Example 2:

MKL function is called from a critical section of a parallel
region - set MKL_NUM_THREADS=N, where N is the
number of physical cores in the system (or use
mkl_set_num_thread(N) routine) .

NOTE:
set additional options when the application is based on
OpenMP* threads.

consequences
of inadequate
interfaces for
parallel
software ...

Enable MKL threading - use when you are sure that there
are enough resources (physical cores) for MKL threading
in addition to your own threads. Choose N carefully.

Example 1:

application has 2 threads, each thread calls MKL and the
system has 8 cores: it's reasonable to set
MKL NUM THREADS=4.

Example 2:

MKL function is called from a critical section of a parallel
region - set MKL_NUM_THREADS=N, where N is the
number of physical cores in the system (or use
mkl_set_num_thread(N) routine) .

NOTE:
set additional options when the application is based on
OpenMP* threads.

consequences
of inadequate
interfaces for
parallel
software ...

Enable MKL threading - use when you are sure that there
are enough resources (physical cores) for MKL threading
in addition to your own threads. Choose N carefully.

Example 1:

application has 2 threads, each thread calls MKL and the
system has 8 cores: it's reasonable to set
MKL NUM THREADS=4.

Example 2:

MKL function is called from a critical section of a parallel
region - set MKL_NUM_THREADS=N, where N is the
number of physical cores in the system (or use
mkl_set_num_thread(N) routine) .

NOTE:
set additional options when the application is based on
OpenMP* threads.

consequences
of inadequate
interfaces for
parallel
software ...

Software Produ

ath Kernel Library (Int
Using Intel® MKL with Threaded Applications

Page Contents:

- If more than one thread calls Intel MKL
and the function being called is threaded, it

is important that threading in Intel MKL be
turned off. Set OMP_NUM_THREADS=1in
ST the environment.

list them

ns, Intel MK
Here an

compiles the program
This is mere problematic because setting OMP_NUM_THREAD
ronment affects both the compiler's threading library and the threading

http://www.intel.com/support/performancetools/libraries/mkl/sb/CS-017177.htm

consequences —

Using Intel® MKL with Threaded Ap

of inadequate ==
Interfaces for

paraIIEI ST e, | * | IMOFE than one thread calls Intel MKL
_ o = and the function being called is threaded, it
SOftwaI‘e s T " is jmportant that threading in Intel MKL be

s e pre e e turned off. Set OMP_NUM_THREADS=1 in
the environment.

| M n be aware that it is in a parallel
KL #{ same threading library. If the
. (y operate in multithre
ases and our

d: S threads on Lin » Win32*
on Wind . If more than one thread calls Intel MKL and the
ion being called is threaded, it is important that threading in Intel MKL
be turned t OMP_NUM_THREADS=1 in the environment,

the program using irect ' mas and
piles the program using a compiler other than m Intel.
mere proble because setting OMP_NUM_THREADS in the
onment affects both the compiler's threading library and the threading

http://www.intel.com/support/performancetools/libraries/mkl/sb/CS-017177.htm

operating system has inadequate
knowledge of applications execution
needs/semantics to make optimal decisions

operating system has inadequate
knowledge of applications execution
needs/semantics to make optimal decisions

distributed systems need bidirectional interface too

distributed system callback interface:
container/VM failed
— resource deallocation

(operating) system

__

distributed systems need bidirectional interface too

distributed system

(operating) system .~

callback interface:

container/VM failed
resource deallocation

tell the distributed
system about

“planned failures”
(i.e., maintenance)

Apache Mesos

Dogfooding:

Apache Spark

Is people are
(already) building software
that operates distributed
systems...

common pattern: ad hoc control planes

goal: provide distributed system™ as solution: a control plane built out of ad
software as a service (SaaS) to the rest hoc scripts, ancillary services, etc, that
of your internal organization or to sell deploy, maintain, and upgrade said SaaS

to external organizations

* e.g., analytics via Spark, message queue via
Kafka, key/value store via Cassandra

grafana pgbadger

container container
pgpool <
container prometheus
container
gateway
container
collect collect
container container dba (cron) vacuum
watch container container
container
IBEEEEEREEEEREEE TITTT I T IT I 0111 -
@ crunchy-pg crunchy-pg RESTORED
container container e @ crunchy-pg
NAEEEEERNNERENREAR| — AESRENNRNERNERE — t'p container
container AENSRNRENNNNNRE
Volume Volume
==,

https://github.com/crunchydata/crunchy-containers © 2017 Mesosphere, Inc. All Rights Reserved.

S kubectl create -f SLOC/kitchensink-master-service.json

$ kubectl create -f SLOC/kitchensink-slave-service.json

S kubectl create -f SLOC/kitchensink-pgpool-service.json

$ envsubst < SLOC/kitchensink-sync-slave-pv.json | kubectl create -f -
$ envsubst < SLOC/kitchensink-master-pv.json | kubectl create -f -

$ kubectl create -f SLOC/kitchensink-sync-slave-pvc.json

$ kubectl create -f SLOC/kitchensink-master-pvc.json

$ envsubst < $LOC/kitchensink-master-pod.json | kubectl create -f -

$ envsubst < SLOC/kitchensink-slave-dc.json | kubectl create -f -

$ envsubst < SLOC/kitchensink-sync-slave-pod.json | kubectl create -f -
$ envsubst < SLOC/kitchensink-pgpool-rc.json | kubectl create -f -

$ kubectl create -f SLOC/kitchensink-watch-sa.json

$ envsubst < SLOC/kitchensink-watch-pod.json | kubectl create -f -

https://schd.ws/hosted_files/cnd2016/8d/Containerizing%20PostgreSQL%20and%20Making%20it%20Cloud%20Native%20Ready%20-%20Jeff%20McCormick.pdf

S kubectl create -f SLOC/kitchensink-master-service.json

$ kubectl create -f SLOC/kitchensink-slave-service.json

S kubectl create -f SLOC/kitchensink-pgpool-service.json

S envsubst < SLOC/kitchensink-sync-slave-pv.json | kubectl create -f -
S envsubst < SLOC/kitchensink-master-pv.json | kubectl create -f -

$ kubectl create -f SLOC/kitchensink-sync-slave-pvc.json

$ kubectl create -f SLOC/kitchensink-master-pvc.json

$ envsubst < $LOC/kitchensink-master-pod.json | kubectl create -f -

$ envsubst < SLOC/kitchensink-slave-dc.json | kubectl create -f -

$ envsubst < SLOC/kitchensink-sync-slave-pod.json | kubectl create -f -
$ envsubst < SLOC/kitchensink-pgpool-rc.json | kubectl create -f -

$ kubectl create -f SLOC/kitchensink-watch-sa.json

$ envsubst < SLOC/kitchensink-watch-pod.json | kubectl create -f -

https://schd.ws/hosted_files/cnd2016/8d/Containerizing%20PostgreSQL%20and%20Making%20it%20Cloud%20Native%20Ready%20-%20Jeff%20McCormick.pdf

what happens if there’s a bug in the control plane?
what if my control plane has diverged from yours?
what happens when a new release of the distributed

system invalidates an assumption the control plane
previously made?

a better world ...

control planes should be built into the distributed systems itself by the
experts who built the distributed system in the first place!

as an industry we should strive to build a standard interface that distributed
systems can leverage

abstractions exist for good reasons, but
without sufficient communication they
force sub-optimal outcomes...

a better world ...

control planes should be built into distributed systems themselves by the
experts who built the distributed system in the first place!

as an industry we should strive to build a standard interface distributed
systems can leverage

how do we scale the operations

of distributed systems?

let them scale themselves!

OPERATING SYSTEMS ARE FOR APPLICATIONS

‘“SaaS” Experience using DC/OS

B8 @

GitLab HDFS

ataStax Enterprise TR
§€ MariaDB é .
. . qur P

Orerativas

Confluent Kafka MariaDB Zeppelin

8 8 @0

rog Artifactory MemSQL

DC/0S SERVICE
MANAGES IT'S
OWN UPGRADES

B
o

00

B =

%

Upgrading Kafka

Configuring Update - Block 8 of 350
e
PRE-FLIGHT

Hide Details

Phase 1 of 3: Configuring Update

++INEEER

View Upgrade Log

approx. 28m 5ds

W e

DC/0S: AVOIDING CLOUD LOCK-IN #2

CAPABILITY AWS AZURE GCP DC/0S

Object Storage S3 Blob Storage Cloud Storage @
Quobyte
2
Block Storage Elastic Block Storage (EBS) Page Blobs, Premium Storage GCE Persistent Disks]?1!{(:
2
File Storage Elastic File System File Storage ZFS [Avere];N{JC
. CRATE.IO N
Relational RDS SQL Database Cloud SQL (MySQL) M%B AMMEVSQL MU
NoSQL DynamoDB DocumentDB Datastore, Bigtable ng) pB “riak
" Full Text Search CloudSearch Log Analytics, Search N/A 0'.0 elastic
(%)
B v
= Hadoop / Analytics Elastic Map Reduce (EMR) HDInsight Dataproc, Dataflow Cppplem .S'pcnr‘ll(\z
c
<) . kafk Spor{g_
o Stream Processing [Ingest Kinesis Stream Analytics, Data Lake Kinesis atka syeaming
S
© . . @ \(APACHE
o Data Warehouse Redshift SQL Data Warehouse BigQuery A DRILL
Monitoring CloudWatch Application Insights, Portal Stackdriver Monitoring Cretsil £3ruxit Osysdia

DATADOG

Serverless Lambda Azure Functions Google Cloud Functions GALACTIC FOG

THANKYOU!

DEMO!
QUESTIONS?

@ users@dcos.io
m /groups/8295652

/dcos
/dcos/examples
/dcos/demos

© 2017 Mesosphere, Inc. All Rights Reserved.

© 2017 Mesosphere, Inc. All Rights Reserved. 87

abstractions exist for good reasons, but
without sufficient communication they
force sub-optimal outcomes...

