Day 2
Operations of
Cloud-Native
dystems

MESOSPHERE

Elizabeth K. Joseph, @pleia2

Elizabeth K. Joseph, Developer Advocate

J
J
J
J

15+ years working in open source communities

10+ years in Linux systems administration and engineering roles

Founder of OpenSourcelnfra.org

Author of The Official Ubuntu Book and Common OpenStack Deployments

Day 2 Operations

Anyone can write a deployment tool.

What’s next?

Cloud-Native Systems

You no longer have a single server with everything running on it.

It’s now a multi-tier system with various owners down the stack:

Network

Hardware

Resource abstraction
Scheduler

Container

Virtual network
Application

iy Ny Ny Ny Ny Ry

Unification of tooling

This gets out of hand very quickly

Unification of operations and tracking becomes important

e Reduces resource consumption (multiple monitoring & logging agents, etc)
e Simplifies troubleshooting (tracing a problem through the stack)
e Consolidates view for all parties (from operations to app developers)

DAY 2 OPERATIONS

Metrics and Monitoring

- Collecting metrics
- Downstream processing
- Alerting

- Dashboards
- Storage (long-term retention)

Logging

- Scopes
- Local vs. centralized
- Security considerations

DAY 2 OPERATIONS

Maintenance Troubleshooting
- Cluster Upgrades - Debugging
- Cluster Resizing - Services
- Gapacity Planning - System
- User & Package Management - Tracing
- Networking Policies - Chaos engineering

- Auditing
- Backups & Disaster Recovery

METRICS &
MONITORING

METRICS
CONGEPTS

storage

event router

dashboard

node
service collectd
container collectd
host collectd

alerting

METRICS e local scraping:
TOOLCHAIN a. collectd

b. cAdvisor

e event router:

a. fluentd
b. Flume

c. Kafka

d. logstash

e. Riemann

https://collectd.org/
https://collectd.org/
https://github.com/google/cadvisor
https://github.com/google/cadvisor
http://www.fluentd.org
http://www.fluentd.org
https://flume.apache.org
https://flume.apache.org
https://kafka.apache.org
https://kafka.apache.org
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
http://riemann.io
http://riemann.io

METRICS
TOOLCHAIN

e storage:

a. Elasticsearch

b. Graphite

c. InfluxDB

d. KairosDB/Cassandra

e. OpenTSDB/HBase

f. others such a local filesystem, Ceph FS,
HDFS, etc.

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://graphiteapp.org
https://graphiteapp.org
https://influxdata.com/time-series-platform/influxdb
https://influxdata.com/time-series-platform/influxdb
https://kairosdb.github.io
https://kairosdb.github.io
http://opentsdb.net
http://opentsdb.net

METRICS e dashboard:
TOOLCHAIN a. D3

b. Grafana

c. signal fx

e alerting:

a. BigPanda

b. PagerDuty

c. signal fx

d. VictorOps

https://d3js.org
https://d3js.org
https://grafana.net
https://grafana.net
https://signalfx.com
https://signalfx.com
https://bigpanda.io
https://bigpanda.io
https://www.pagerduty.com
https://www.pagerduty.com
https://signalfx.com
https://signalfx.com
https://victorops.com
https://victorops.com

INTEGRATED
METRICS
TOOLCHAIN

Amazon CloudWatch
AppDynamics

Azure Monitor
Circonus

DataDog
dcos/metrics

Ganglia
Google Stackdriver
Hawkular

lcinga
Librato

Nagios
New Relic
OpsGenie

Pingdom
Prometheus

Ruxit Dynatrace
Sensu

Sysdig
Zabbix

https://aws.amazon.com/cloudwatch
https://aws.amazon.com/cloudwatch
https://aws.amazon.com/cloudwatch
https://www.appdynamics.com
https://www.appdynamics.com
https://www.appdynamics.com
https://azure.microsoft.com/services/application-insights
https://azure.microsoft.com/services/application-insights
https://azure.microsoft.com/services/application-insights
https://www.circonus.com
https://www.circonus.com
https://www.circonus.com
https://www.datadoghq.com
https://www.datadoghq.com/
https://www.datadoghq.com
https://github.com/dcos/dcos-metrics/
https://github.com/dcos/dcos-metrics/
http://ganglia.info
http://ganglia.info
http://ganglia.info
https://cloud.google.com/monitoring
https://cloud.google.com/monitoring
https://cloud.google.com/monitoring
http://www.hawkular.org/
http://www.hawkular.org/
http://www.hawkular.org/
https://www.icinga.com
https://www.icinga.com
https://www.icinga.com
https://www.librato.com
https://www.librato.com
https://www.librato.com
https://www.nagios.org
https://www.nagios.org
https://www.nagios.org
https://newrelic.com
https://newrelic.com
https://newrelic.com
https://www.opsgenie.com
https://www.opsgenie.com
https://www.opsgenie.com
https://www.pingdom.com
https://www.pingdom.com
https://www.pingdom.com
https://prometheus.io
https://prometheus.io
https://prometheus.io
http://www.dynatrace.com/en/ruxit
http://www.dynatrace.com/en/ruxit
https://sensuapp.org
https://sensuapp.org
https://sensuapp.org
https://sysdig.com
https://sysdig.com
http://www.zabbix.com
http://www.zabbix.com/
http://www.zabbix.com

LOGGING

© 2017 Mesosphere, Inc. All Rights Reserved.

LOGGING
SCOPES

service (app/business)

container

host & intra-host

LOGGING

TOOLING

EXAMPLES

(PRIMITIVES) e DC/OS logging overview

e Docker logging drivers

e systemd's journalctl

https://dcos.io/docs/latest/administration/logging/
https://dcos.io/docs/latest/administration/logging/
https://docs.docker.com/engine/admin/logging/overview/
https://coreos.com/os/docs/latest/reading-the-system-log.html

I-OGGING e (Centralized app logging with fluentd

TOOLING . DO/OS
EXAMPLES a. ELK stack log shippin
(INTEGRATED) | B
b. Splunk
e Graylog
o Loggly
e Papertralil

e Sumo Logic

http://www.fluentd.org/centralized_application_logging
http://www.fluentd.org/centralized_application_logging
https://dcos.io/docs/1.8/administration/logging/elk/
https://dcos.io/docs/1.8/administration/logging/elk/
https://dcos.io/docs/1.8/administration/logging/splunk/
https://dcos.io/docs/1.8/administration/logging/splunk/
https://www.graylog.org/
https://www.graylog.org/
https://www.loggly.com/
https://www.loggly.com/
https://papertrailapp.com/
https://papertrailapp.com/
https://www.sumologic.com/
https://www.sumologic.com/

TROUBLESHOOTING

Incl. examples with DG/0S

Effective
troubleshooting

A high level view to discover where the error or
failure has occurred (preferably a unified view)

Tooling for tracing an error through the stack
(systems, networks, etc)

Team communication and tooling for delegating
solutions responsibility

© 2017 Mesosphere, Inc. All Rights Reserved.

19

DEBUGGING
101

e Services: typically specific to service, use logging (for
example, dcos task log) and dcos node ssh or

dcos task exec for per-node investigations

e System:

o Simple diagnostics via dcos node diagnostics

o Comprehensive dump via clump

o Services deployment troubleshooting dashboard

https://dcos.io/docs/1.9/overview/telemetry/#diagnostics
https://github.com/mhausenblas/clump/tree/master/recipes/dcos

Recent Resource Offers (2)

[|
When you attempt to deploy a service, DCJ/OS waits for offers to match the resources your service requires. If the offer does
not satisfy the requirement, it is declined and DC/OS retries. Learn mare,

0 a r Summary

50%

® Matched Declined

Details

HOST - CPU/MEM/DSK RECEIVED

10.0.0.193 2 minutes ago

10.0.4.126 2 minutes ago

© 2017 Mesosphere, Inc. All Rights Reserved.

OTHER

TROUBLESHOOTING
TECHN|QUES o Idea: identify latency issues and perform

e Tracing

root-cause analysis in a distributed setup

o OpenTracing

e Chaos Engineering
o ldea: proactively break (parts of) the system to
understand how it reacts
o Chaos Monkey
o DRAX

http://opentracing.io/
http://opentracing.io/
https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey
https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey
https://github.com/dcos-labs/drax
https://github.com/dcos-labs/drax

MAINTENANCE
& BEYOND

. Upgrades
Overview Sioing

User and package management

How to install a new version of X?
When to scale what (service-level vs. nodes)
Who gets to access/install which services in what way?

Networking
Auditing

Disaster Recovery

Is everything getting where it needs to be? Does some traffic need priority?
What services can talk to each other and in which way?

Who accessed what, when and how?
How is the continuous operation of the cluster and the services accomplished?

What happens when cluster (or critical infra components like ZK) go down?

Build in time

These things can’t be an afterthought when something goes wrong.

Build time into deployment and maintenance plan.

Cloud-Native
Infrastructure
“Must Haves”

Metrics collection
Centralized logging
Debugging tools that cover:
o Host

a Container

o Application

Upgrade strategy

Backups

Disaster recovery

To conclude

Properly managing cloud-native systems is complicated!

Ask the right questions

Unify and simplify as much as you can
Have a checklist of considerations
Plan in time to complete everything

My Ny Ny .

@ users@dcos.io

/dcos
/dcos/examples
/dcos/demos

NEXT
MNEGEN

Questions?

Feedback?

Elizabeth K. Joseph
Twitter: @pleia2
Email: ejoseph@dcos.io

Mesosphere, Inc. All Rights Reserved.

