
© 2017 Mesosphere, Inc. All Rights Reserved. 1

Advanced Continuous
Delivery Strategies for
Containerized Applications
Using DC/OS

ContainerCon
@ Open Source Summit

North America 2017

Elizabeth K. Joseph
@pleia2

© 2017 Mesosphere, Inc. All Rights Reserved. 2

❏ Developer Advocate at Mesosphere
❏ Spent 4 years working on CI/CD for

OpenStack
❏ 10+ years in Linux systems

administration and engineering roles
❏ Author of The Official Ubuntu Book

and Common OpenStack
Deployments

Elizabeth K. Joseph, Developer Advocate

© 2017 Mesosphere, Inc. All Rights Reserved. 3

Continuous delivery (CD) is a software engineering approach in which teams produce
software in short cycles, ensuring that the software can be reliably released at any
time.

Via https://en.wikipedia.org/wiki/Continuous_delivery

Definition: Continuous Delivery

https://en.wikipedia.org/wiki/Continuous_delivery

© 2017 Mesosphere, Inc. All Rights Reserved.

WEEK 1 WEEK 2 WEEK 3 WEEK 4

PROJECT
PLANNING

Customer
Feedback

Customer
Feedback

Customer
Feedback

RELEASE 1 RELEASE 2 RELEASE 3 RELEASE 4

Better products
through a repeatable
release cadence

Happier developers
through continuous
feedback

Dev

Test Stage

Release Dev

Test Stage

Release Dev

Test Stage

Release Dev

Test Stage

Release

4

Modern Release Process

© 2017 Mesosphere, Inc. All Rights Reserved. 5

CD: A Key Component of Modern Release Processes

● Low risk releases

● Faster time to
market

● Higher quality SW

● Lower costs

● Happier teams

Continuous Delivery - getting workloads
READY and RUNNING:

● Perform code analysis, unit tests, and
integration tests (continuous integration)

● Dynamically provision environments,
configure them, and manage
dependencies

● Provision servers (infrastructure
automation)

● Deliver and Deploy applications to
environments (Dev to Stage to Prod)

© 2017 Mesosphere, Inc. All Rights Reserved. 6

CD with
Containers and
DC/OS: 2-pronged
approach

Run everything in containers!

CC BY 2.0: https://www.flickr.com/photos/rubbermaid/6909787969/

Organize everything efficiently!

CC BY-ND 2.0:
https://www.flickr.com/photos/96227967@N05/24954030641/

https://www.flickr.com/photos/96227967@N05/24954030641/

© 2017 Mesosphere, Inc. All Rights Reserved. 9

Traditional Workload Flow Stages

Test
CI

Stage (pre-prod)
CD

Production
CD

Traditional Monoliths

Developers Operator Managed (Shared)

Install (Local) Development (Local
Deploy)

© 2017 Mesosphere, Inc. All Rights Reserved. 10

Modern Workload Flow Stages

Install (Local) Development (Local
Deploy) Test Stage (pre-prod) Production

Stateless

Install (Local) Development (Local
Deploy) Test Stage (pre-prod) Production

Stateful DB

Stage (pre-prod) ProductionTest

Other

Developers (Local, Shared) Operator Managed (Shared)

Install (Local) Development (Local
Deploy)

© 2017 Mesosphere, Inc. All Rights Reserved. 11

BUILDING & OPERATING CI/CD PIPELINES IS CHALLENGING

Jenkins JenkinsJenkins

GitLab Artifactory

TravisCI TravisCI TravisCI

GitHub

Proprietary
Artifact Registry

● Installing each service and maintaining
upgrades is time-consuming, with each
machine having different OS’s and tooling

○ More difficult because teams like to use
many technologies and tools as building
blocks

○ Spinning up CD pipeline for each
application is time-consuming

● Low utilization driven by silos of developers
with single-instances of tools

● Poor allocation of capacity may prevent
developers from shipping code, and acquiring
new HW is slow

Team A

Artifactory

GitLab

Team B Team C Team D Team E Team F

Artifactory Artifactory

GitHub

© 2017 Mesosphere, Inc. All Rights Reserved. 12

NAIVE APPROACH

Typical Datacenter
siloed, over-provisioned servers,

low utilization

Industry Average
12-15% utilization

Jenkins-2

microservice

Cassandra

Jenkins-1

Artifactory

© 2017 Mesosphere, Inc. All Rights Reserved. 13

THE KERNEL:
APACHE
MESOS

© 2017 Mesosphere, Inc. All Rights Reserved. 14

Use: The primary resource manager and
negotiator

Why Mesos?
● 2-level scheduling
● Fault-tolerant, battle-tested
● Scalable to 10,000+ nodes
● Created by Mesosphere founder @ UC

Berkeley; used in production by 100+
web-scale companies [1]

[1] http://mesos.apache.org/documentation/latest/powered-by-mesos/

APACHE MESOS

© 2017 Mesosphere, Inc. All Rights Reserved. 15

DC/OS

© 2017 Mesosphere, Inc. All Rights Reserved. 16

DC/OS: Datacenter Operating System

● Resource management
● Task scheduling
● Container orchestration
● Logging and metrics
● Network management
● “Universe” catalog of pre-configured apps

(including Jenkins, GitLab, Artifactory…),
browse at http://universe.dcos.io/

● And much more https://dcos.io/

http://universe.dcos.io/
https://dcos.io/

© 2017 Mesosphere, Inc. All Rights Reserved. 17

DC/OS
Architecture
Overview

Security &
GovernanceContainer Orchestration Monitoring & Operations User Interface & Command Line

HDFS Jenkins Marathon Cassandra Flink

Spark Docker Kafka MongoDB +30 more...

DC/OS

Services & Containers

ANY INFRASTRUCTURE

© 2017 Mesosphere, Inc. All Rights Reserved. 18

Web-based GUI

https://dcos.io/docs/lates
t/usage/webinterface/

Interact with DC/OS (1/2)

https://dcos.io/docs/latest/usage/webinterface/
https://dcos.io/docs/latest/usage/webinterface/

© 2017 Mesosphere, Inc. All Rights Reserved. 19

CLI tool

https://dcos.io/docs/latest/usage/cli/

API

https://dcos.io/docs/latest/api/

Interact with DC/OS (2/2)

https://dcos.io/docs/latest/usage/cli/
https://dcos.io/docs/latest/api/

© 2017 Mesosphere, Inc. All Rights Reserved. 20

MULTIPLEXING OF DATA, SERVICES, USERS, ENVIRONMENTS

Typical Datacenter
siloed, over-provisioned servers,

low utilization

Mesos/ DC/OS
automated schedulers, workload multiplexing onto the

same machines

Jenkins-2

microservice

Cassandra

Jenkins-1

Artifactory

© 2017 Mesosphere, Inc. All Rights Reserved. 21

RELIABLE, SIMPLIFIED CI/CD INTEGRATION with DC/OS
Development Team Self-Service for CI/CD

1

Continuous
Integration

Artifact Repo &
Container Registry

Container
Orchestrator

Version Control
System Load BalancerProduction

Environment

Continuous Delivery Pipeline

git push

Apache Mesos & DC/OS

© 2017 Mesosphere, Inc. All Rights Reserved. 22

RELIABLE, SIMPLIFIED CI/CD INTEGRATION with DC/OS
Development Team Self-Service for CI/CD

1

Jenkins

Artifactory, Nexus

MarathonGitLab, Bitbucket,
GitHub Marathon-lbDC/OS (Mesos)

Continuous Delivery Pipeline

git push

Apache Mesos & DC/OS

© 2017 Mesosphere, Inc. All Rights Reserved. 23

LET DEVELOPERS USE THE TOOLS THEY WANT
Development Team Self-Service for CI/CD

1

DC/OS

● Single-command installation of services like
Jenkins, GitLab, and Artifactory

● Once a service is installed, it can be run
across the entire datacenter, elastically
sharing all or some of the datacenter’s
resources

● Ability to run application code (PaaS),
containers, and distributed applications
with no restrictions to application
development teams

© 2017 Mesosphere, Inc. All Rights Reserved. 24

A MODERN RELEASE PROCESS

Development Team Self-Service for CI/CD
● Scale services instances to provide on-demand Build/Test/Staging infrastructure with reduced time & cost to provision

● Manage multiple installations for different groups; centralized role based access control to all cluster resources

● Choose the tools you want and get support from partners for enterprise tools integrated with DC/OS

Elastic Scaling with Resource Optimization for build bursting
● Teams share the same pool of resources, dramatically increasing utilization (6,000 builds/day on 46 physical machines - eBay)

● Use CI/CD tools of your choice with DC/OS, and run everything on the same shared infrastructure

● Health checks to ensure developer tools are always up and running; if an instance fails, it is automatically restarted without data
loss

Build and deploy traditional and modern apps on the same infrastructure
● Identical infrastructure across Test/Staging/Production with strong isolation

1

2

3

© 2017 Mesosphere, Inc. All Rights Reserved. 25

APPLICATION LIFECYCLE
Build and deploy modern apps on the same infra

3

Virtual MachinesPhysical Servers Private Cloud Public Cloud
(Google, AWS, Azure)

DC/OS Services - Git, Artifact Repository, Container Repository, Deployment Scenarios

Infrastructure

DC/OS

Dev
Environment

Production
Environment

Staging / Testing
Environment

DC/OS Platform
BENEFITS

Less developer time troubleshooting
environment issues

Easy experimentation with new
technologies

DC/OS

● Identical Infrastructure across
Test/Staging/Production with
strong isolation

● Self service access

© 2017 Mesosphere, Inc. All Rights Reserved. 26

DEPLOYING APPS

Manual Automatic
Scheduling

Deployment

Health checks

Service discovery

Persistence

● A sysadmin provisions one or more physical/virtual servers
to host the app

● Mesos resource offers (two-tier scheduling) offers available
resources directly to frameworks

● By hand or using Puppet / Chef / Ansible
● Jenkins SSHing to the machine and running a shell script
● Note: all dependencies must also be present!

● Containers deployed, ideally using a CI/CD tool to
create/update app definitions

● Docker containers packages app and dependencies

● Nagios pages a sysadmin ● Health checks, restarts unhealthy/failed instances

● Static hostnames / IP addresses in a spreadsheet or config
management

● A sysadmin configures a load balancer manually or with
Puppet / Chef / Ansible

● Provides DNS resolution for running services (hostname / IP
address, ports, etc)

● Load balancer configs built dynamically using cluster state

● Individual servers with RAID 1/5/6/10, expensive SANs, NFS,
etc.

● Dedicated, statically partitioned Ceph or Gluster storage
clusters

● External/persistent volumes (REX-Ray), HDFS, etc.
● Self-healing Ceph or Gluster on Mesos / DC/OS

© 2017 Mesosphere, Inc. All Rights Reserved. 27

Old vs. New Deploy Process

http://labs.strava.com/blog/mesos/

Build a
Debian

package

Push
deb

pkg to
apt

server

Wait for apt server to have
deb package ready

5 min 10 min 15 min 20 min 25 min 30 min

Boot a new
AWS

instance

Run puppet on the
instance, installing the deb

Turn the
instance into an

AMI image

Boot new
AWS

instances
using new

AMI

Terminate
old AWS

instances

“It would easily take 30 minutes for a single deploy even under ideal conditions where nothing broke.”

Build
and

push
Docker
image

Deploy

30+
minutes

<1
minute

“A simple service might only take 20 seconds to fully deploy under ideal conditions.”

Pre-
Container

Container

© 2017 Mesosphere, Inc. All Rights Reserved. 28

Questions?

Elizabeth K. Joseph
Twitter: @pleia2

Email:
ejoseph@mesosphere.com

@dcos

users@dcos.io

/dcos
/dcos/examples
/dcos/demos

chat.dcos.io

